久硕新闻动态

您的位置:首页>>新闻中心 >> 氢气作为一种重要的化工原料,都有哪些生产方法
点击次数:33     更新时间:2020-07-30

氢气作为一种重要的化工原料,都有哪些生产方法

      氢气是一种清洁的二次能源,氢气来源是能源产业发展的首要问题,因此制氢技术备受行业关注。目前业内研究提出的制氢方式很多,包括采用化石资源(煤、石油、天然气)和可再生资源(水、生物质、太阳能等)生产氢气,但在工业上能够实现规模化、具有经济性、占据主导地位的制氢原料仍是煤和天然气等化石原料,如何利用我国现有的化石资源禀赋条件,研究开发工业上切实可行的制氢工艺技术,具有十分重要的现实意义。

      工业制氢生产技术有煤气化法、甲烷蒸汽转化法、重油部分氧化法、甲醇蒸汽转化法、水电解法、副产含氢气体回收法以及生物质气化制氢等。

      目前,大规模制氢仍以煤和天然气为主,全球氢气生产92%采用煤和天然气,约7%来自于工业副产物,只有1%来自于电解水。近年来由于煤制氢、天然气制氢技术的大规模应用,基于石油替代及经济性方面的原因,重油(常、减压渣油及燃料油等)部分氧化制氢技术在工业上已经很少采用。

煤制氢

      煤气化制氢是工业大规模制氢的首选方式之一,其具体工艺过程是煤炭经过高温气化生成合成气(H2+CO)、CO与水蒸气经变换转变为H2+CO2、脱除酸性气体(CO2+SO2)、氢气提纯等工艺环节,可以得到不同纯度的氢气。

      传统煤气化制氢工艺具有技术成熟、原料成本低、装置规模大等特点,但其设备结构复杂、运转周期相对短、配套装置多、装置投资成本大,而且气体分离成本高、产氢效率偏低、CO2排放量大。与煤气化工艺一样,炼厂生产的石油焦也能作为气化制氢的原料,这是石油焦高附加值利用的重要途径之一。煤/石油焦制氢工艺还能与煤整体气化联合循环工艺(IGCC)有效结合,实现氢气、蒸汽、发电一体化生产,提升炼厂效益。

煤气化制氢技术已有一百余年发展历史,可分为三代技术:

      第一代技术是德国在20世纪20~30年代开发的常压煤气化工艺,典型工艺包括碎煤加压气化Lurgi炉的固定床工艺、常压Winkler炉的流化床和常压KT炉的气流床等,这些工艺都以氧气为气化剂,实行连续操作,气化强度和冷煤气效率得到极大提高。

      第二代技术是20世纪70年代由德国、美国等国家在第一代技术的基础上开发的加压气化工艺,典型工艺包括Shell、Texaco、BGL、HTW、KRW气化工艺等。我国煤气化制氢工艺主要用于合成氨的生产,多年来开发了一批具有自主知识产权的先进煤气化技术,如多喷嘴水煤浆气化技术、航天炉技术、清华炉技术等。

      第三代技术主要有煤催化气化、煤等离子体气化、煤太阳能气化和煤核能余热气化等,目前仍处于实验室研究阶段。

天然气蒸汽转化制氢

      天然气制氢是北美、中东等地区普遍采用的制氢路线。工业上由天然气制氢的技术主要有蒸汽转化法、部分氧化法以及天然气催化裂解制氢。

01天然气蒸汽转化制氢

      蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气发生重整反应,生成H2、CO等混合气体,该反应是强吸热反应,需要外界供热(天然气燃烧)。

      天然气水蒸气重整制氢技术成熟,广泛应用于生产合成气、纯氢和合成氨原料气的生产,是工业上最常用的制氢方法。天然气蒸汽重整反应要求在750~920℃高温下进行,反应压力2~3MPa,催化剂通常采用Ni/Al2O3。工业生产过程中的水蒸气和甲烷的摩尔比一般为3~5,生成的H2/CO比约为3,甲烷蒸汽转化制得的合成气进入水气变换反应器,经过高低温变换反应将CO转化为CO2和额外的氢气,以提高氢气产率。

02甲烷部分氧化法制氢

      部分氧化法是由甲烷等烃类与氧气进行不完全氧化生成合成气。该过程可自热进行,无需外界供热,热效率较高。但若用传统的空气液化分离法制取氧气,则能耗太高,近年来国外开发出用富氧空气代替纯氧的工艺。天然气经过压缩、脱硫后,先与蒸汽混合预热到约500℃,再与氧或富氧空气(也预热到约500℃)分两股气流分别从反应器顶部进入反应器进行部分氧化反应,反应器下部出转化气,温度为900~1000℃,氢含量50%~60%。

      该工艺是利用反应器内热进行烃类蒸汽转化反应,因而能广泛地选择烃类原料并允许较多杂质存在(重油及渣油的转化大都采用部分氧化法),但需要配置空分装置或变压吸附制氧装置,投资高于天然气蒸汽转化法。天然气部分氧化制氢的反应器采用的是高温无机陶瓷透氧膜,可在高温下从空气中分离出纯氧,避免氮气进入合成气,这与传统的蒸汽重整制氢相比,工艺能耗显著降低,可在一定程度上降低投资成本。

03天然气催化裂解制氢

      天然气催化裂解制氢是以天然气为原料,经对天然气进行脱水、脱硫、预热后从底部进入移动床反应器,与从反应器顶部下行的镍基催化剂逆流接触,天然气在催化剂表面发生催化裂解反应生成氢气和碳,由于反应是吸热过程,除原料预热外,还需要在移动床反应器外侧加热补充热量,反应器顶部出口的氢气和甲烷混合气经旋风分离器分离碳和催化剂粉尘后回收热量,然后去变压吸附(PSA)分离提纯,得到产品氢气。未反应的甲烷、乙烷等部分产物作为燃料循环使用。反应得到的另一主产物碳随着催化剂从底部流出反应器,经换热后进入气固分离器分离残余甲烷、氢气,然后进入机械振动筛将催化剂和碳分离,催化剂再生后循环使用,分离出的碳可用于制备碳纳米纤维等高附加值产品。天然气催化裂解制氢反应过程从反应原理上看不产生任何CO2,在生产氢气的同时,主产物碳可加工为高端化碳材料,该工艺与煤制氢和天然气蒸汽转化法制氢相比,其制氢成本和CO2排放量均大大降低,具有明显的经济效益和社会效益,市场前景好,目前该工艺仍在研究开发阶段。

甲醇制氢

      工业上通常使用CO和氢气经过羰基化反应生产甲醇,甲醇制氢技术则是合成甲醇的逆过程,可用于现场制氢,解决目前高压和液态储氢技术存在的储氢密度低、压缩功耗高、输运成本高、安全性差等弊端。按工艺技术区分,甲醇制氢技术包括甲醇裂解制氢、甲醇蒸汽重整制氢和甲醇部分氧化制氢3种。

01甲醇裂解制氢

甲醇裂解制氢用甲醇和水在一定温度(导热油炉系统提供)、压力和催化剂作用下裂解转化生成氢气、二氧化碳及少量一氧化碳和甲烷的混合气体,作为制取纯氢的原料气,原料气经变压吸附(简称PSA)法提纯氢气,改变操作条件可以生产不同纯度的氢气,纯度最高可达99.9%以上。

甲醇裂解制氢分以下几道工序:

①转化工序

甲醇与脱盐水的蒸汽混合物在转化器中加压加热催化裂解和转化一步完成,生成氢气和二氧化碳。

②变压吸附工序

③导热油工序

④脱盐水工序

02甲醇水蒸气重整制氢

      在220~280℃、0.8~2.5MPa、催化剂存在下,甲醇和水转化为约75%氢气、24%CO2以及极少量的CO、CH4,可将甲醇和水中的氢全部转化为氢气,甲醇消耗0.5~0.65kg/m3氢气,甲醇储氢质量分数达到18.75%。

      该技术的使用条件温和,产物成分少,易分离,制氢规模在10~10000m3/h内均能实现,且产能可灵活调整,适用于中小型氢气用户现制现用。缺点是采用Cu/Zn/Al催化剂,催化剂易失活,需要进一步开发活性高、稳定性好的新型催化剂。

03甲醇部分氧化制氢

通过甲醇的部分氧化(1分子甲醇和0.5分子的氧气反应生成2分子的氢气和1分子的CO2)实现系统自供热,大幅提高能源利用效率,以期进一步降低制氢成本。该技术目前仍在研究开发阶段。

工业副产氢

      工业副产氢是在工业生产过程中氢气作为副产物,包括炼厂重整、丙烷脱氢、焦炉煤气及氯碱化工等生产过程产生的氢气。

其中只有炼厂催化重整生产过程的氢气用于炼油加氢精制和加氢裂化生产装置,其他工业过程副产的氢气大部分被用作燃料或放空处理,基本上都没有被有效利用,这部分工业副产氢对于氢燃料电池汽车产业发展具有很大的回收利用潜力。

      我国工业副产氢气资源潜力大,每年产量约1048万吨,其中炼厂重整产氢量大(136万吨/年)但全部用来满足炼油生产,丙烷脱氢装置产氢量少(18万吨/年)且资源分散,而钢铁工业和炼焦行业的焦炉煤气氢气含量高、数量大(721万吨/年),焦炉煤气与氯碱行业每年合计副产氢气802万吨,占全部副产氢总量的76.5%。